Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.475
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653987

RESUMEN

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleótido de Nicotinamida , Oocitos , Especies Reactivas de Oxígeno , Animales , Ratones , Femenino , Oocitos/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Superóxido Dismutasa-1 , Daño del ADN/efectos de los fármacos , Estreptozocina , Oogénesis/efectos de los fármacos
2.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653878

RESUMEN

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Proteínas Sustrato del Receptor de Insulina , Ratones Endogámicos C57BL , Plasticidad Neuronal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proteínas tau , Animales , Masculino , Ratones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Estreptozocina , Sinapsis/efectos de los fármacos , Proteínas tau/metabolismo
3.
Phytomedicine ; 128: 155485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640854

RESUMEN

BACKGROUND: Oxidative stress can lead to uncontrolled glucose metabolism and, thus, diabetes. Auricularia auricula-judae (Bull.) Quél. polysaccharides possess biological activities, such as antioxidant and hypoglycemic effects, but their mechanism of their acid hydrolysates on oxidative stress-injured glucose metabolism disorders is unclear. PURPOSE: Using diabetic mice, we investigated the effect of the acid hydrolysate of polysaccharides from Auricularia auricula-judae (Bull.) Quél. on improving diabetes. STUDY DESIGN AND METHODS: The structural information of sample polysaccharides was measured by high performance gel permeation chromatography, nuclear magnetic resolution, and high performance liquid chromatography. The diabetic model was established by intraperitoneal injection of streptozotocin. For eight consecutive weeks, the mice were orally administered sample polysaccharides (100, 200, and 300 mg/kg b.w. per day) for intervention. The improvement effect of the samples on diabetes was explored by detecting the changes in biochemical indicators in mice, and the underlying mechanism was studied by transcriptomic and metabolomic analysis. RESULTS: The results showed that acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides consisted mainly of mannose, xylose, glucuronic acid, and glucose; its weight-averaged molecular weight was 6.3842 × 104 Dalton, its number average molecular weight was 2.9594 × 104 Dalton; and the molecule contained α-Glc(1→4)-, ß-Glc(1→3)-, and ß-Man(1→4)-linked glycosidic bonds. A total of 100 mg/kg b.w. per day sample was the best intervention concentration. After eight weeks of intervention, the sample polysaccharides significantly reduced dynamic blood glucose and serum lipids, enhanced antioxidant enzyme activities, promoted glucagon like peptide-1 and insulin secretion, improved insulin sensitivity and alleviated insulin resistance in diabetic mice. Transcriptomic and metabolomic analyses showed that sample polysaccharides was able to ameliorate disorders of glucose metabolism by modulating gene expression such as glucokinase; and modulate the state of oxidative stress in mice in vivo by regulating the glutathione metabolism pathway. CONCLUSION: Acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides improved glucose metabolism disorders by slowing down the oxidative stress injury in mice, thereby alleviating diabetes. This study provided a basis for determining the underlying mechanism of the antidiabetic effect of Auricularia auricula-judae (Bull.) Quél. polysaccharides, which would significantly improve the deep development and application of these materials in diabetes control.


Asunto(s)
Antioxidantes , Auricularia , Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Estrés Oxidativo , Polisacáridos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Auricularia/química , Masculino , Ratones , Hipoglucemiantes/farmacología , Antioxidantes/farmacología , Glucemia/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Hidrólisis , Estreptozocina
4.
Pharmazie ; 79(1): 6-10, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38509628

RESUMEN

Promoting antidiabetic phytomedicines necessitates evidence-based preclinical investigations, particularly in animal models. The present study investigated the validity of using the streptozotocin-nicotinamide-induced type 2 diabetic (STZ/NA-induced T2DM) model to evaluate the effects of Physalis peruviana leaf crude extracts on controlling blood glucose levels and regulating physiological biomarkers in rats. Aqueous and methanol extracts dissolved in carboxymethylcellulose 1% (100, 200, mg/kg/day) were administered orally to STZ/NA-induced T2DM rats alongside glibenclamide (5 mg/kg) as the standard drug for four weeks. Blood samples were collected in fasting rats on days 1, 7, 14, 21, and 28 to measure glucose concentration, lipoprotein-cholesterol, and common serum biomarkers. Nutrition characteristics were also monitored, as well as the pancreas histology. Administration of STZ/NA in Wistar rats induced the T2DM significantly lower than did STZ alone (glycaemia 200 vs 400 mg/dL). The significant effects observed with plant extracts compared to untreated diabetic rats were blood glucose reduction (28-52 %), HDL-C increase, LDL-C decrease, ALAT increase, WBC increase, body weight gain (24%), and pancreas protection. The findings confirm the antidiabetic effect of P. peruviana in T2DM animal model.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Physalis , Ratas , Animales , Glucemia , Niacinamida/efectos adversos , Ratas Wistar , Estreptozocina/efectos adversos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Extractos Vegetales , Hojas de la Planta , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Biomarcadores
5.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38541120

RESUMEN

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Asunto(s)
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metanol/farmacología , Metanol/uso terapéutico , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucemia , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Insulina , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Colesterol , Albúminas
6.
Open Vet J ; 14(2): 730-737, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38549571

RESUMEN

Background: Controlling apoptosis induced by oxidative stress in pancreatic ß-cells provides promising strategies for preventing and treating diabetes. Clinacanthus nutans leaves possess bioactive constituents with potential antioxidant and anti-diabetic properties. Aim: This study aimed to investigate the molecular mechanisms by which C. nutans extract protects pancreatic ß-cells from apoptotic damage in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced in male Wistar rats by intraperitoneal injection of 45 mg/kg STZ, followed by 28 days of treatment with C. nutans leaf extract and Glibenclamide as the standard drug. At the end of the study, blood samples were collected to measure glucose levels, oxidative stress markers, and inflammation. Pancreatic tissue was stained immunohistochemically to detect c-Jun N-terminal kinase (JNK) and Caspase-3 expression. Results: The administration of C. nutans leaf extract to diabetic rats significantly reduced fasting blood glucose, malondialdehyde, and tumor necrosis factor-α levels, while concurrently enhancing the activity of superoxide dismutase. The immunohistochemical studies revealed a decrease in the expression of JNK and caspase-3 in the pancreatic islets of diabetic rats. Conclusion: Clinacanthus nutans exhibits the potential to protect pancreatic ß-cells from apoptosis by suppressing oxidative stress and inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedades de los Roedores , Ratas , Masculino , Animales , Estreptozocina/uso terapéutico , Caspasa 3/metabolismo , Ratas Wistar , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estrés Oxidativo , Apoptosis , Inflamación/tratamiento farmacológico , Inflamación/veterinaria , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
J Ethnopharmacol ; 327: 118045, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479546

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY: This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS: Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION: YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Células Secretoras de Insulina , Ratas , Animales , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Estreptozocina/farmacología , Dieta Alta en Grasa/efectos adversos , Glucemia , Diabetes Mellitus Experimental/metabolismo , Estrés Oxidativo , Hiperglucemia/tratamiento farmacológico , Glucosa/metabolismo , Lípidos
8.
J Ethnopharmacol ; 328: 118083, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521428

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a significant metabolic disease impacting many of the world's population. In Morocco, a wide range of medicinal plants has taken great importance in the treatment of diabetes, among these plants; we find Argania spinosa (L.) Skeels. AIM: The objective of our work is based on the evaluation of the effect of roasted (Roil) and unroasted (UnRoil) Argan seed oil on diabetic nephropathy. MATERIALS AND METHODS: Roasted and unroasted oils from Argania spinosa (L.) Skeels seeds were examined for their effects on diabetic nephropathy using an experimental streptozotocin-induced model. Biochemical and histopathological analyses were conducted on blood and kidney samples to assess renal function and tissue damage. RESULTS: Both oils ameliorated significantly diabetic nephropathy symptoms. They limited the renal damage caused by streptozotocin and improved diabetes symptoms, including blood glucose levels, body weight, water intake, urinary volume, and kidney parameters. This activity could be elucidated by the antioxidant effect of Argan oil, enabling to neutralize free radicals and undertake a fundamental role in preventing the onset of these complications. CONCLUSION: Based on our findings, Argan oil could be used as dietary supplement for people with diabetes as a preventive measure against the emergence of diabetic complications.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Sapotaceae , Humanos , Ratas , Animales , Ratas Wistar , Estreptozocina , Nefropatías Diabéticas/tratamiento farmacológico , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico
9.
J Ethnopharmacol ; 328: 118094, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hodgsonia heteroclita has been known as an important traditionally consumed medicinal plant of North-East India known to have antidiabetic properties. This study aims to investigate the effects of the ethanolic fruit extract of Hodgsonia heteroclita against hyperglycemia and hyperlipidemia by using streptozotocin (STZ) treated diabetic mice. MATERIALS AND METHODS: The fruits of H. heteroclita were collected from the various parts of Kokrajhar district, Assam India (Geographic coordinates: 26°24'3.85″ N 90°16'22.30″ E). Basic morphological evaluations were carried out by the Botanical Survey of India, Eastern circle, Shillong, who also certified and identified the plant. Hexane, chloroform, and ethanolic extracts of the fruit of H. heteroclita were investigated for α-amylase inhibition assay as a rapid screening tool for examining anti-diabetic activity. The efficacy of ethanolic extract at a dose of 100, 200, and 300 mg/kg body weight was tested for 21 days in STZ-induced diabetic mice. The body weight, fasting plasma glucose and serum lipids, and hepatic glycogen levels were measured in experimental animals to examine the antihyperglycemic and antihyperlipidemic efficacy of the extract. Both HPTLC and LC-MS analysis was performed to examine the phyotochemicals present in the ethanolic extract of H. heteroclita. RESULTS: It has been observed that treatment with the ethanolic extract dose-dependently reduced the plasma glucose levels, total cholesterol, low density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol, triglyceride, and increased the body weight, liver glycogens and high-density lipoprotein-cholesterol in STZ treated diabetic mice. HPTLC demonstrated the presence of triterpene compounds and LC-MS analysis revealed the presence Cucurbitacin I, Cucurbitacin E, and Kuguacin G as the triterpene phytoconstituents. CONCLUSION: The present study demonstrated that ethanolic fruit extract of H. heteroclita improved both glycemic and lipid parameters in mice model of diabetes.


Asunto(s)
Cucurbitaceae , Diabetes Mellitus Experimental , Triterpenos , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/análisis , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Hipolipemiantes/análisis , Glucemia , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Etanol/química , Glucógeno Hepático , Colesterol/farmacología , Peso Corporal , Triterpenos/farmacología , Estreptozocina/farmacología
10.
Drug Metab Pers Ther ; 39(1): 35-45, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469711

RESUMEN

OBJECTIVES: Diabetic nephropathy is a chief reason of mortality particularly in individuals with renal dysfunction. The current research was aimed to assess the nephroprotective portion of Vaccinium oxycoccos toward mice diabetic nephropathy induced by streptozotocin (STZ). V. oxycoccos was purchased and used for hydroalcoholic extraction. METHODS: Sixty male mice were subjected to STZ-intraperitoneal injection (45 mg/kg). After diabetes induction, mice were divided into five groups of diabetic control (received only STZ), non-diabetic control (received only citrate buffer), two V. oxycoccos treatment (received V. oxycoccos extract (200 and 400 mg/kg) oral daily by gavage), and metformin treatment (received metformin (500 mg/kg) oral daily by gavage). Glucose and weight of mice were checked weekly. RESULTS: After 28 days, the effect of V. oxycoccos extract on serum and urine parameters were assessed. STZ caused significant decreased in the mice body weight. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest weight loss at day 28 (70.2±1.38 g). STZ caused significant increase in the mice FBS. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest FBS at day 28 (189.2±1.20 mg/dL). Treatment of mice with V. oxycoccos (400 mg/kg) caused the lowest increase in the levels of cholesterol, HbA1c and triglycerides compared to the diabetic control mice. Compared to the diabetic control group, mice treated with V. oxycoccos (400 mg/kg) had the highest HDL, insulin, SOD, and GSH (p<0.05). The lowest serum BUN, CR, and UR were found in mice treated with V. oxycoccos (400 mg/kg). Anti-inflammatory effects of V. oxycoccos (400 mg/kg) was shown by the lowest TNF-α, IL-6, and TGF-ß1 concentration in mice treated with V. oxycoccos (400 mg/kg). CONCLUSIONS: The current study disclosed that treatment with V. oxycoccos resulted in substantial development in the serum and urine parameters and also antioxidant and anti-inflammatory response of STZ-induced diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Metformina , Vaccinium macrocarpon , Vaccinium , Ratones , Masculino , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inducido químicamente , Estreptozocina/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Metformina/uso terapéutico , Extractos Vegetales/efectos adversos , Antiinflamatorios/uso terapéutico , Glucemia
11.
Phytomedicine ; 128: 155499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492367

RESUMEN

BACKGROUND: Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE: The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS: We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS: Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-ß-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS: Our results provide multidimensional theoretical support for the study and application of P. capitata.


Asunto(s)
Nefropatías Diabéticas , Porcinos Enanos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Porcinos , Diabetes Mellitus Experimental , Estreptozocina , Medicamentos Herbarios Chinos/farmacología , Suplementos Dietéticos , Masculino , Proteómica
12.
Front Endocrinol (Lausanne) ; 15: 1336854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370359

RESUMEN

Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.


Asunto(s)
Precursor de Proteína beta-Amiloide , Diabetes Mellitus Experimental , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Calidad de Vida , Estreptozocina , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
13.
Int J Biol Macromol ; 262(Pt 2): 130061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336324

RESUMEN

Diabetes mellitus is characterized by elevated blood sugar level due to a deficiency in insulin production and/or action. Balanites aegyptiaca (BA) has been employed as a hypoglycemic medication. Nanoparticles (NPs) have many advantages like minimized drug dose, sustainable drug release, maximized bioavailability and delivery of drugs. The study aimed to synthesize novel chitosan (CS) NPs loaded with BA extract (BA Ex). The prepared NPs were examined in treatment of streptozotocin-induced diabetes in rats. The anti-diabetic efficiency was evaluated through measuring of levels of blood glucose, insulin, lipid profile, oxidative stress markers, pro-inflammatory cytokines. GC-MS, HPLC and ICP techniques showed the presence of numerous bioactive components that have an anti-diabetic effectiveness. BA Ex-CS NPs succeeded in treatment of diabetes; where, it increased insulin secretion, lowered both FBG and FTA levels and helped in neogenesis of pancreatic islets beta cells. The regenerative activity of BA Ex-CS NPs is attributed to its high antioxidant and anti-inflammatory properties. This antioxidant activity scavenged the generated free radicles that resulted from STZ administration. CS NPs raised the plant extract efficacy, prevented its degradation, and regulated the release of its components. The delivery of BA Ex bioactive components has been revolutionized by CS NPs.


Asunto(s)
Balanites , Quitosano , Diabetes Mellitus Experimental , Nanopartículas , Ratas , Animales , Quitosano/uso terapéutico , Estreptozocina , Insulina , Diabetes Mellitus Experimental/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
14.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38355028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Asunto(s)
Costus , Diabetes Mellitus Experimental , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estreptozocina , Costus/química , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Metabolismo de los Hidratos de Carbono , Antiinflamatorios/farmacología , Lípidos/uso terapéutico , Glucemia
15.
Neuroreport ; 35(4): 258-268, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305135

RESUMEN

Diabetic neuropathic pain (DNP) is a frequent complication of diabetes. Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), a multi-functional serine/threonine kinase subunit, is mainly located in the surface layer of the spinal cord dorsal horn (SCDH) and the primary sensory neurons in dorsal root ganglion (DRG). Numerous studies have indicated electroacupuncture (EA) takes effect in various kinds of pain. In this research, we explored whether CaMKIIα on rats' SCDH and DRG participated in DNP and further explored the mechanisms underlying the analgesic effects of EA. The DNP model in rats was successfully established by intraperitoneal injection of streptozotocin. Certain DNP rats were treated with intrathecal injections of KN93, a CaMKII antagonist, and some of the DNP rats received EA intervention. The general conditions, behaviors, the expressions of CaMKIIα and phosphorylated CaMKIIα (p-CaMKIIα) were evaluated. DNP rats' paw withdrawal threshold was reduced and the expressions of p-CaMKIIα in SCDH and DRG were upregulated compared with the Normal group, while the level of CaMKIIα showed no significance. KN93 attenuated DNP rats' hyperalgesia and reduced the expressions of p-CaMKIIα. We also found EA attenuated the hyperalgesia of DNP rats and reduced the expressions of p-CaMKIIα. The above findings suggest that p-CaMKIIα in SCDH and DRG is involved in DNP. The analgesic effect of EA in DNP might be related to the downregulation of p-CaMKIIα expression level. Our study further supports that EA can be an effective clinical treatment for DNP.


Asunto(s)
Bencenosulfonamidas , Bencilaminas , Diabetes Mellitus , Neuropatías Diabéticas , Electroacupuntura , Neuralgia , Ratas , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Estreptozocina , Neuropatías Diabéticas/terapia , Neuropatías Diabéticas/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos
16.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396842

RESUMEN

Type 2 diabetes is characterized by hyperglycemia and a relative loss of ß-cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin-nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α-amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of ß-cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.


Asunto(s)
Ácido Betulínico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Femenino , Animales , Antioxidantes/uso terapéutico , Niacinamida/farmacología , Niacinamida/uso terapéutico , Ratas Wistar , Estreptozocina/efectos adversos , Diabetes Mellitus Experimental/inducido químicamente , Glucemia , Extractos Vegetales/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Glucosa/efectos adversos , Biomarcadores , alfa-Amilasas
17.
Neurochem Res ; 49(1): 52-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37597050

RESUMEN

Increased oxidative stress and acetylcholinesterase (AChE) activity are key pathological characters contributing to the memory disorders. Thus, drugs targeting both oxidative stress and AChE are being explored for the management of cognitive dysfunction. Morus alba fruits (commonly consumed for its high nutritious value) are known to have antioxidant and AChE inhibitory effects. However, the role of Morus alba fruits in the management of memory disorders has not reported yet. This investigation was conducted to assess the antioxidant and AChE inhibitory potential of Morus alba fruit extracts in-vitro and to identify the components responsible for such effects. Further, the obtained bioactive component was studied for possible memory improvement effects against streptozotocin (STZ) induced dementia. To isolate the bioactive component in-vitro DPPH and AChE assays guided fractionation was performed. Memory functions in mice were determined using Morris Water Maze test while brain biochemical parameters were measured to understand the mechanism of action. In-vitro assays revealed strong AChE and DPPH inhibitory potential of methanol extract (ME), therefore, it was further fractionated. Among various fractions obtained, ethyl-acetate fraction (EAF) was found to possess marked AChE and DPPH inhibitory activities. On subsequent fractionation of EAF, bioactivity of obtained sub-fractions was found to be inferior to EAF. Further, both ME and EAF improved STZ (intracerebroventricular) induced cognitive dysfunction in animals by restoring endogenous antioxidant status (superoxide dismutase and reduced glutathione) and reducing thiobarbituric acid reactive species and nitric oxide levels along with brain AChE and myeloperoxidase activity. TLC densitometric studies showed appreciable levels of phenolic acids and quercetin in both EAF and ME. It can be concluded that Morus alba fruit extract has the ability to modulate cholinergic and oxidative system due to presence of phenolic and flavonoid compounds and hence, could aid in the management of memory disorders.


Asunto(s)
Antioxidantes , Disfunción Cognitiva , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estreptozocina/toxicidad , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Acetilcolinesterasa/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Estrés Oxidativo , Cognición , Colinérgicos/efectos adversos , Colinérgicos/análisis , Aprendizaje por Laberinto
18.
Artículo en Inglés | MEDLINE | ID: mdl-37691221

RESUMEN

BACKGROUND: The medicinal plants of the Cucurbitaceae family, such as Solena heterophylla Lour. fruits, have significant ethnobotanical value and are readily accessible in North East India. AIMS: We conducted a study on Solena heterophylla Lour. fruits to evaluate their anti-diabetic activity in vivo, standardize their HPTLC, and profile their metabolites using LC-QTOF-MS. We aimed to explore the molecular mechanism behind their effects on oxidative stress and glycosylated hemoglobin (HbA1c). METHODS: Firstly, the ethyl acetate fraction of Solena heterophylla Lour. fruits was standardized using Cucurbitacin B as a standard marker by conducting HPTLC evaluation. Next, we delved into analyzing metabolite profiling. In addition, the standardized fraction was utilized in an experimental study to investigate the molecular mechanism of action in an in vivo high-fat diet and a low dose of streptozotocin-induced diabetic model. RESULTS: We have reportedly identified 52 metabolites in the ethyl acetate fraction of Solena heterophylla (EASH). In the in vitro tests, it has been observed that this extract from plants possesses notable inhibitory properties against α-amylase and α-glucosidase. Solena heterophylla fruits with high levels of Cucurbitacin B (2.29% w/w) helped lower FBG levels in animals with EASH treatment. EASH treatment reduced HbA1c levels and normalized liver lipid peroxidation and antioxidant enzyme levels. SGOT, SGPT, and SALP serum enzyme levels also returned to normal. CONCLUSION: Based on the current evaluation, it was found that EASH exhibited encouraging hypoglycemic effects in diabetic rats induced by a low dose of STZ and high-fat diet, which warrants further investigation.


Asunto(s)
Acetatos , Cucurbitaceae , Diabetes Mellitus Experimental , Triterpenos , Ratas , Animales , Hemoglobina Glucada , Extractos Vegetales/efectos adversos , Antioxidantes/farmacología , Estrés Oxidativo , Hipoglucemiantes/efectos adversos , Estreptozocina/efectos adversos , Plantas Comestibles , Glucemia
19.
Chem Biol Interact ; 387: 110823, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049026

RESUMEN

Chronic hyperglycemia-induced neuropathological changes include neuronal apoptosis, astrogliosis, decrease in neurotrophic support, impaired synaptic plasticity, and impaired protein quality control (PQC) system. Vitamin B12 is indispensable for neuronal development and brain function. Several studies reported the neuroprotective effect of B12 supplementation in diabetic patients. However, the underlying molecular basis for the neuroprotective effect of B12 supplementation in diabetes needs to be thoroughly investigated. Two-month-old Sprague-Dawley rats were randomly assigned into three groups: Control (CN), diabetes (D; induced with streptozotocin; STZ), and diabetic rats supplemented with vitamin B12 (DBS; vitamin B12; 50 µg/kg) for four months. At the end of 4 months of experimentation, the brain was dissected to collect the cerebral cortex (CC). The morphology of CC was investigated with H&E and Nissl body staining. Neuronal apoptosis was determined with TUNEL assay. The components of neurotrophic support, astrogliosis, synaptic plasticity, and PQC processes were investigated by immunoblotting and immunostaining methods. H& E, Nissl body, and TUNEL staining revealed that diabetes-induced neuronal apoptosis and degeneration. However, B12 supplementation ameliorated the diabetes-induced neuronal apoptosis. Further, B12 supplementation restored the markers of neurotrophic support (BDNF, NGF, and GDNF), and synaptic plasticity (SYP, and PSD-95) in diabetic rats. Interestingly, B12 supplementation also attenuated astrogliosis, ER stress, and ameliorated autophagy-related proteins in diabetic rats. Overall, these findings suggest that B12 acts as a neuroprotective agent by inhibiting the neuropathological changes in STZ-induced type 1 diabetes. Thus, B12 supplementation could produce beneficial outcomes including neuroprotective effects in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fármacos Neuroprotectores , Ratas , Humanos , Animales , Lactante , Vitamina B 12/farmacología , Vitamina B 12/uso terapéutico , Ratas Sprague-Dawley , Estreptozocina/farmacología , Diabetes Mellitus Experimental/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Gliosis , Apoptosis
20.
J Med Food ; 27(4): 339-347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37801671

RESUMEN

Purslane (P), chard (CHA), and chicory (CHI) leaf extracts are individually and traditionally used in the treatment of diabetes mellitus. Polyphenols, flavonoids, the polyphenolic profile of the extracts, and their antioxidant activity were determined. This study evaluated the antidiabetic activity of combinations of these extracts in streptozotocin-induced diabetic rats. Diabetic groups were administered orally and daily for 40 days with the investigated extracts at 250 mg/kg body weight (b.w.) or metformin (100 mg/kg b.w.) as a drug. Fasting blood glucose, oral glucose tolerance, insulin, and fructosamine were assessed. The combined extracts with high levels of P or CHI exerted potent hypoglycemic activity compared with metformin in addition to the restoration of the histopathological changes in the liver and pancreas of diabetic rats to a near-normal state. Therefore, these combined extracts could be developed as natural drugs for diabetes.


Asunto(s)
Beta vulgaris , Cichorium intybus , Diabetes Mellitus Experimental , Metformina , Portulaca , Ratas , Animales , Hipoglucemiantes , Estreptozocina/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Extractos Vegetales/farmacología , Glucemia , Insulina , Metformina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA